Abstract

Surgical phase recognition is a
critical task in computer-
assisted surgery, requiring
models that can capture both
fine-grained spatial features
and long-range temporal
dependencies in video. In this
work, we present a lightweight,
two-stage architecture that
combines a frozen ResNet-18
visual backbone with a causal
Transformer encoder for real-
time phase prediction in
laparoscopic surgeries. Using
the Cholec80 dataset, we
explore multi-video finetuning
as a strategy to improve
temporal generalization and
robustness, sampling frames
across multiple surgeries to
model higher-level procedural
structure. Our
ResNet+Transformer approach
achieves 63.8% frame-wise
accuracy with only 23.8M
parameters, outperforming
RNN-based baselines and
approaching the performance
of state-of-the-art methods like
EndoNet and MSN at a fraction
of the computational cost. We
show that multi-video
finetuning improves model
robustness to visual drift and
phase ambiguity, and provide
qualitative analyses to support
the effectiveness of our
temporal reasoning framework.
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Introduction

- Problem: Surgical phase recognition is a
long-standing challenging in computer
vision, that can enable real-time decision
support, skill assessment, and workflow
automation in operating rooms

Credit: Da Vinci surgical system/Getty Images

— Limitations of Existing Methods: Existing
deep learning frameworks (e.g. LoViT,
EndoNet) are unable to capture long-term
dependencies, rely significantly on visual
similarity between adjacent phases, or lack
temporal generalization.

Dataset

= Cholec80: 80 laparoscopic surgery videos
annotated with 7 surgical phases. Real-world,
but limited in size.

Phase 1 Phase 2: Phase 3: Phase 4:
Preparation Calot Triangle Dissection Clipping

Phase 5: Phase 6: Phase 7:
Gallbladder Retraction

Cleaning Coagulation Gallbladder Packaging

Goals

Lightweight architecture and parameter
count

Architecturally-agnostic mechanism to
boost performance

Achieve comparable accuracy to existing
state-of-the-art models/baselines
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Methodology

1: ResNet + Transformer 2: Training Strategy
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Spatial Encoder (Frozen ResNet-18): Extracts
key visual features from each frame (tools,
anatomy) efficiently using a pre-trained
backbone.

Temporal Encoder (Causal Transformer):
Models the procedural flow by analyzing the
sequence of frame features. A causal mask
ensures the model only uses past information,
making it suitable for live prediction.

3: ResNet + GRU 4: 3D CNN

Temporal Modeling: Used ResNet for frozen

feature extraction. GRU is causal by nature,
computationally efficient, and maintains
temporal dependencies with hidden state.

T T T T

Hidden Hidden Hidden Hidden
State 1 g State 2 ’ State 3 ’ State 4

T T T T

ResNet ResNet ResNet ResNet
18 18 18 18

T 1 I I

l’ ‘l
- & 4
. b : |
% = =i
: AR dlE
Z M s
. ' 4 14 S P " . v
- " - £ LA e
. Z k. R ’ »
. . ; ‘ -~ . ;
% . B e - .‘ :.‘J g
S 4 - v ald 4
: / ", S \e "\ e ol .- | .'. f %
. . . o000 . . . . . .

Multi-Video Finetuning: Our proposed
method to boost test-time performance with
no changes to the model architecture.

Divide individual videos into T/n frames,
where n is the number of videos and T is
the number of frames in that video.

Uniformly sample these frames at 1fps, and
coalesce each video frame-by-frame

Theoretical advantages of proposed

approach:

- "Forces” model to learn temporal
relationships, not just copy previous frame
label

= Accounts for inter-video variability (as well

as phase variability)

= Lightweight, does not add any additional
computational overhead to train using this
method.

Joint Spatiotemporal Learning:

Stack consecutive video frames into 3D
volume input of shape [C, T, H, W] where T is
number of frames.

3D CNN backbone learns spatiotemporal
features simultaneously

Final prediction made through MLP
Downside: May be less computationally
efficient than other architectures since it
needs to learn more parameters
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Results

We use two metrics to evaluate model
performance:
= Frame-wise phase classification accuracy

= Parameter count for computational
efficiency

Method Accuracy Parameters
AlexNet 59.6 62,378,344
EndoNet (No HMM) [23] 65.6 62,435,702
MSN [3] 76.3 88,117,923
LoViT [17] 91.5 123,229,677
3D CNN + Transformer 38.4 52,183,337
Resnet + GRU 40.6 11,769,671
ResNet + Transformer 60.6 23,789,639

Table 1: Comparison of our method with baselines

Ablation Study
Method wio MVT w/ MVT
3D CNN + Transformer 384 39.1
Resnet + GRU 40.6 47.8
ResNet + Transformer 6.6 63.8

Table 2: Multi-video finetuning effects on custom-
trained models.

Using Multi-Video Finetuning had a measurable
iImpact on all the architectures we tried,
suggesting a model-agnostic approach to
Improving test-time performance for video
models.

Conclusion & Examples

Prediction: Calot Triangle Dissection
Gr

Label: Preparation
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ound Truth: Preparation Label: Clipping

Prediction: Gallbladder Dissection
Ground Truth: Gallbladder Packaging

= MVT increases accuracy without
compromising computational efficiency

— Efficient and accurate architecture means
potential for real-time surgical assistance

= Our method outperforms RNN baseline and
EndoNet, but there is room for improvement
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