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Introduction

e Traditional portfolio strategies (60/40, equal We train an ensemble of three Actor-Critic agents, using PPO clipping to prevent the model from Ensemble PPO achieved the strongest performance, with a 15.76% annualized

Methods & Experiments

weight) fail to adapt during regime shifts overreacting to market noise. The final strategy averages their outputs to ensure stable, robust

. , return and a 1.436 Sharpe ratio on the 2022-2024 test set, outperforming all
decision-making.

baseline strategies.
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Market Features (378 total) 5
. . - Final Action a; Collected Experience (s, a, Tr, V(st)) 2023-01  2023-04  2023-07  2023-10  2024-01  2024-04  2024-07  2024-10  2025-01
Multi-horizon returns (50), Volatility (40), , ) Fiqure 4: Normalized Portfolio Value
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Momentum (40), Technical indicators- RSI, MACD, Figure 1: Overview of the Ensemble PPO Framework g
Bollinger Ba nds, and ATR (90), Cross-asset Strategy Total Return  Ann. Return  Volatility Sharpe Sortino Max DD Calmar Final Value
correlations (45), Statistical features (20), Regime Ensemble PPO  34.08% 15.76% 1097% 1436 2222 -10.00% 1575  $134,078
- : 60/40 Portfolio  28.48% 13.32% 10.66% 1250 1970 -12.60% 1.057  $128,356
indicators (3), Base prices/returns (30) z Equal Weight 25.47% 11.99%  10.02% 1196 1.845 -959% 1250  $125340
Risk Parity 22.93% 10.85% 935%  1.161 1.800 -8.83% 1229  $122,809

Portfolio Features (14 total)

Current weights for each ETF (SPY, QQQ, IWM, EFA,
EEM, TLT, IEF, GLD, DBC, VNQ) + cash, portfolio
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Table 1: Summary of Metrics

T RO Discussions & Future Research

value, recent return, and drawdown.
ot Run 1 Smoothed Value Step Relative
Environment Setup . o e Discussion: Our ensemble PPO model outperformed all baselines, achieving
We formulate portfolio management as a Markov ¢ rreseemmammIER TS e e e s the highest returns and Sharpe ratio. Its stability comes from ensembling,
Decision Process (MDP). Figure 2: Value Loss Curves transaction-cost penalties, and a broad feature set that supports adaptation
A . ] y - ) | to changing market conditions. The main limitation was slower response
t eac t!mestep t, the agent can take action by N A = [\ during sharp reversals, but overall the method captured allocation patterns
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e Reward is normalized daily return minus cost ' * v \‘ \‘ Future Research: Future work could incorporate sequence models such as
r, = 100 (Vt+‘1/—\/t ) B 100%. W \M‘ LSTMs or Transformers to improve responsiveness to rapid market regime
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o Portfolio weights must sum to 1 O AAANL learning may further enhance generalization and real-time adaptability.
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